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We consider the quantum spin-l/2 Ising chain in a uniform transverse magnetic 
field, with an aperiodic sequence of ferromagnetic exchange couplings. This 
system is a limiting anisotropic case of the classical two-dimensional Ising 
model with an arbitrary layered modalation. Its formal solution via a Jordan- 
Wigner transformation enables us to obtain a detailed description of the 
influence of the aperiodic modulation on the singularity of the ground-state 
energy at the critical point. The key concept is that of the fluctuation of the sums 
of any number of consecutive couplings at the critical point. When the fluctua- 
tion is bounded, the model belongs to the "Onsager universality class" of the 
uniform chain. The amplitude of the logarithmic divergence in the specific heat 
is proportional to the velocity of the fermionic excitations, for which we give 
explicit expressions in most cases of interest, including the periodic and 
quasiperiodic cases, the Thue-Morse chain, and the random dimer model. When 
the couplings exhibit an unbounded fluctuation, the critical singularity is shown 
to be generically similar to that of the disordered chain: the ground-state energy 
has finite derivatives of all orders at the critical point, and an exponentially 
small singular part, for which we give a quantitative estimate. In the marginal 
case of a logarithmically divergent fluctuation, e.g., for the period-doubling 
sequence or the circle sequence, there is a negative specific heat exponent e, 
which varies continuously with the strength of the aperiodic modulation. 

KEY WORDS: Automata and substitutions; critical phenomena; incommen- 
surate structures; Ising model; phase transitions; quantum spin chains; quasi- 
crystals. 

1. I N T R O D U C T I O N  

Since  t he  e x p e r i m e n t a l  d i s c o v e r y  of  q u a s i c r y s t a l s ,  i n t e n s e  ac t i v i t y  h a s  b e e n  

d e v o t e d  to  the  s t u d y  of  a p e r i o d i c  s t r u c t u r e s  in  o r d e r  to  u n d e r s t a n d  t he  
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interplay between their geometrical characteristics, such as self-similarity 
and/or quasiperiodicity, and their physical properties. The model systems 
which allow for a quantitative analysis of these matters are essentially 
limited to the realm of one-dimensional structures, i.e., aperiodic chains. 
This relationship between geometrical and physical properties has been 
mostly explored so far in the context of linear problems, such as lattice 
dynamics (phonon spectra) or electronic spectra (tight-binding or K r o n i ~  
Penney Hamiltonians) (see refs. 1 and 2 for recent reviews). Many specific 
results have been established for models based, e.g., on the Fibonacci 
sequence or the Thue-Morse sequence. Some generic results are also 
available. Focusing our attention onto the tight-binding Hamiltonian, let 
us mention mathematical results about gap labeling theorems, (3"41 which 
tell us about the possible discrete values taken by the integrated density of 
states in gaps of, e.g., electronic spectra. It turns out that all the gaps are 
generically open in one dimension. The scaling behavior of the gap widths 
as a function of the strength of the aperiodic modulation has been related 
in a quantitative way ~5) to the behavior of the Fourier transform of the 
potential at the corresponding wavevector. 

Less is known about the physical properties described by nonlinear 
equations, such as the spin systems which model magnetic properties. 
A prototype of such systems is provided by the quantum Ising chain in a 
transverse field. The aim of the present work is to study the influence of an 
aperiodic modulation on the critical behavior of the model. This can be 
done in a detailed way, because the model is formally solvable by means 
of a Jordan-Wigner transformation. (6) 

The quantum spin-l/2 Ising chain in a transverse magnetic field is 
defined by the Hamiltonian 

- - E  (1) (~) (3) (1.1) = JnCrn G n + I - - h E G  n 
n n 

Every site n of the chain is occupied by a spin-l/2 operator with components 
a(~ ) (a = 1, 2, 3), equal to half the Pauli matrices. The constant h > 0 denotes 
the transverse magnetic field, whereas the ferromagnetic exchange couplings 
J , > 0  between pairs of nearest neighbors form an arbitrary infinite 
sequence. We introduce for further reference dimensionless couplings e, and 
6, through 

e. = exp b. =--Jn (1.2) 
2h 

It was realized long ago (7) that the quantum chain described by the 
Hamiltonian (1.1) at zero temperature can be viewed as a very anisotropic 
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limit of the two-dimensional classical Ising model at finite temperature 
T= 1//~ in zero external field, described by the Hamiltonian 

H2D = - ~ (Kl,nSm.nSm, n+l + K 2 S  .... Sm+~,n) (1.3) 
m , n  

where the Sin,, = +__ 1 are now classical Ising spins, living on the sites of a 
"rectangular" lattice. The couplings K1, n in the "spacelike" direction depend 
on n, whereas the coupling K2 in the "timelike" direction is uniform. The 
correspondence between both models is as follows: the quantum problem 
is the limit of the classical one as Kl,n-+0 and /s + vo, so that 
f l K l , , = e n e x p ( - 2 f l K 2 ) .  Let us emphasize that the modulation of the 
classical model is layered, namely, that the couplings depend only on one 
lattice coordinate n. 

In the following, we will use the language of the ground-state proper- 
ties of the quantum spin chain, for the sake of simplicity. Our results can 
be translated, mutatis mutandis, in terms of finite-temperature properties 
of the classical two-dimensional Ising model. Since the original solution 
by Onsager {s~ of the two-dimensional Ising model, many alternative 
approaches have been proposed, which explains why this model can be 
solved exactly. One of the most fruitful methods has been introduced by 
Lieb et al. ~6~ This general approach consists in an exact mapping of the 
Hamiltonian of the spin chain onto a model of free fermions, by means of 
a Jordan-Wigner transformation, introducing fermionic operators which 
are nonlocal in the original spin degrees of freedom. This transformation 
works for the general Hamiltonian (1.1), with an arbitrary sequence of 
exchange couplings. Dtails will be given in Section 2.1. 

The two-dimensional Ising model with layered quenched disorder, 
where the exchange couplings K~,n are independent random variables, has 
been studied in refs. 9-12. The most remarkable outcome of this analysis 
is that the Onsager critical singularity of the uniform Ising model (the 
well-known logarithmic divergence of the specific heat) is turned by an 
arbitrarily small disorder into an exponentially small essential singularity 
for the free energy, which has finite derivatives of any order at the critical 
temperature, 

The fact that any amount of quenched disorder alters the critical 
singularity can be understood by means of the following scaling argument, 
which applies to any aperiodic sequence {Jn} of exchange couplings, 
generalizing thus the Harris criterion. (1~ We will show in Section 2.3 that 
the critical point is defined by the condition /~ = 0, where /, denotes the 
following Cesfiro average: 

#=~---~--- lim 1 (1.4) 
n - - 1  
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of the 6, defined in Eq. (1.2). In other words, for any physically 
"reasonable" sequence of exchange couplings, there is a finite critical value 
of the magnetic field, namely 

hc = �89 exp(ln J , )  (1.5) 

so that 

# = In h~ h (1.6) 

is a measure of the distance to criticality [t~ ~ - ( h -  hc)/hc as h--* hc]. 
As it turns out, the key concept is that of the fluctuation of the 

exchange couplings. Consider a finite sample of the chain, consisting of N 
spins (1 ~< n ~< N). We define the associated fluctuation gN as the following 
partial sum of the reduced couplings 6n at criticality: 

N 

g N  = ( 1 . 7 )  
n = l  

The analogous concept of the fluctuation of the atomic positions in a 
structure w.r.t, its underlying average lattice has proved to be fruitful in the 
study of the types of order present in aperiodic structures. (14 17) 

In virtue of the criticality condition /~ = 0, the fluctuation cannot be 
"large," in the sense that we have gN ~ N for large N. Nevertheless, because 
of its finiteness, the sample will not be exactly at criticality, but rather at 
a small distance to the critical point, which can be estimated as ~t ~ gN/N. 
On the other hand, it is well known that the uniform chain has a correla- 
tion length which diverges as ~ ~/~ -v, with v = 1. The aperiodic modulation 
will be relevant, using the language of the renormalization group, i.e., the 
nature of the critical singularity will be altered, if the shift of the critical 
coupling induced by the finite size of the sample is (much) larger than the 
value of # for which the correlation length ~ is comparable to the sample 
size N, i.e., # ~  1IN. Both above estimates imply that the relevance 
condition reads gN >~ 1. 

We conclude from the above heuristic argument that any unbounded 
fluctuation in the sequence of exchange couplings drives the model out of 
the "Onsager universality class," so that the critical singularity is weaker 
than that of the uniform chain. 

The aim of this paper is to make this prediction more quantitative, 
and to relate the nature of the critical singularity of the ground-state energy 
to the asymptotic growth of the fluctuation of the exchange couplings. 
Some previous works have already led to partial results on these matters. 
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Several authors (18 21~ have shown that the Fibonacci quantum Ising chain, 
where the exchange couplings follow the quasiperiodic ordering of the 
Fibonacci sequence, is in the Onsager universality class, in agreement with 
the above criterion. The value of the prefactor of the logarithmic divergence 
of the specific heat  has also been derived. These results have been 
generalized in several respects. (22 29) It is shown in refs. 30 and 31 that, 
among the deterministic self-similar structures, only those for which the 
sequence of exchange couplings has a bounded fluctuation belong to the 
"Onsager universality class." More precisely, the authors of ref. 31 suggest 
that "the behavior is similar to the random case" whenever the fluctuation 
gN is unbounded. All these results are in accord with the generalized Harris 
criterion exposed above. A more thorough analysis is performed hereafter, 
which yields quantitative predictions. 

The remainder of this article is as follows. In Section 2, we recall some 
general formalism about the Jordan-Wigner transformation, and we derive 
the prefactor of the critical singularity for any periodic chain. In Section 3, 
we present a scaling analysis of the critical region of the disordered case, 
recovering thus most outcomes of refs. 9 and 12 in an elementary and more 
accurate fashion. The subsequent sections present our main novel results 
concerning the critical singularity when the exchange couplings follow an 
arbitrary sequence. The case of a bounded fluctuation, yielding an Onsager- 
like singularity, is described in Section 4, whereas Section 5 deals with the 
weaker critical singularities induced by unbounded fluctuations. Among 
other results, the marginal case of a logarithmically growing fluctuation is 
shown to yield a continuously varying specific heat exponent ~ < 0. 

2. P E R I O D I C  C H A I N S  

2.1. Genera l i t ies  

The quantum Ising chain defined by the Hamiltonian (1.1) is exactly 
solvable for an arbitrary sequence of exchange constants {J,}, in the 
sense that it can be mapped onto a free fermionic field, by means of a 
Jordan Wigner transformation. In the context of quantum spin chains, 
this well-known procedure was initiated long ago, (6) as recalled in the 
Introduction. Assume for definiteness that the chain is finite and is made of 
N spins (1 <<.n<~N), with prescribed boundary conditions. Define at each 
site the raising and lowering operators 

(1~ . (2~ ( 2 . 1 )  an* =cr,,(~+ io'~ 2~, an = an -- lo-,~ 
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We have then a,(3)-a~a,- l /2 , -  so that the Hamiltonian (1.1) can be 
written as a quadratic form. The Jordan-Wigner transformation consists in 
introducing the nonlocal operators 

( ftm) Cn = exp iTz a am an, 
m=l 

n--1 ) 
c~=a texp  -ire Z atmam (2.2) 

m=l 

which obey the anticommutation relations of annihilation and creation 
operators of independent fermions. The Hamiltonian (1.1) can be recast as 

 =-hZ o.*o.- - (2.3) 

The last step consists in diagonalizing the quadratic form (2.3) by means 
of a Bogoliubov transformation, of the form 

n 

n 

(2.4) 

The Hamiltonian of the spin chain thus takes the following form: 

N 
A ~ ( q ~ - � 8 9  (2.5) 

The dimensionless excitation energies A~>0 and the coefficients 
{~b .... ~ , , }  of the Bogoliubov transformation (2.4) are the generalized 
eigenvalues and eigenvectors of the following linear difference equations: 

A O . =  - ~ . - ~ . ~ . + ,  
(2.6) 

where the reduced exchange couplings e, have been introduced in Eq. (1.2). 
The system (2.6) has exactly N eigenvalues on the finite chain, with 
prescribed boundary conditions inherited from the spin problem. 

The quantum ground state of the finite chain is the state If2>, which 
is annihilated by all the t/~. Its energy reads 

h L A~ (2.7) Eo = - 
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As a consequence, the thermodynamic reduced ground-state energy g per 
spin is 

g = lim E0 1 f o  U~ ~ Nh 2 Ap(A) dA (2.8) 

where a factor of h has been taken out in order for g to be dimensionless. 
In Eq. (2.8), p(A) denotes the normalized density of states of the 

spectral problem (2.6), defined formally as 

1 N 
p(A)=  lira ~, 6 ( A - A ~ )  (2.9) 

N~oO N ~ =  1 

The spectrum of the Hamiltonian ~ exhibits the following energy gap 
between its ground state and its first one-fermion excited state: 

(E~ - Eo)mi n = hAmi n (2.10) 

where Ami n ~ 0 is the lower bound of the support of the density of states. 
It is advantageous to recast Eq. (2.6) into the following forms, which 

are more familiar in the context of physical properties of inhomogeneous 
chains. First, it is equivalent to either one of the following second-order 
(three-term) equations, involving the {~pn } or the {~b. }: 

(2.11) 
AZqb,=(l+e])(b~+e~O,+l+e, l(b, 1 

The system (2.6) can alternatively be rewritten in the following matrix 
form: 

0n+ 

where the ~ are 2 x 2 transfer matrices, with unit determinant, which read 

en - 1 (2.13) 

The following expression of the commutator of the transfer matrices 
pertaining to two different bonds 

2 2r 
[Ym, J ~ ] = A  e"-em (2.14) 

8rnl?, n 
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shows that these matrices commute among themselves for the special value 
A = 0 of the fermionic energy. This observation will be the starting point of 
the perturbative analysis performed in Section 2.3. 

2.2. The  U n i f o r m  Chain 

The above formalism easily yields the well-known Onsager solution 
in the case of a uniform chain. In this situation, where the en have 
the constant value e, the excitation energies A(q) depend on a Bloch 
momentum q. The dispersion relation which relates q and A can be 
obtained from the transfer matrix as tr Y- = - 2 cos q, where a minus sign 
has been inserted conventionally, in order to have q = 0 at the bottom of 
the spectrum. We thus obtain 

A 2 = 1 - 2e cos q + e 2 = (1 - /~)2 + 4e sin2(q/2) (2.15) 

This relation shows that the spectrum of fermionic energies consists of 
a single band, namely the interval S =  [ l e -  iI, e +  1]. 

The reduced ground-state energy is given by 

~fO dq ..]_ E2)1/2 1 + e E(k) (2.16) d o = -  ( 1 - 2 e c o s q  - - -  
7~ 7~ 

where E(k) denotes the complete elliptic integral of the second kind (ref. 32, 
Vol. II), with modulus k 2 = 4e/(1 + e) 2 = 1 - tanh2(#/2), where # has been 
introduced in Eq. (1.4). 

The expression (2.16) has one isolated singularity, due to small values 
of q, for e = 1, i.e., J = 2h, or equivalently p = 0. These conditions therefore 
define the critical point of the model. It is als0 worth noticing that the 
reduced energy gap Ami n = ] g -  11 ~ I~1 vanishes linearly with the distance 
to the critical point. 

In the critical region (# --* 0), the ground-state energy has the following 
behavior: 

r~l I2 _~_(ln64#2 1) -.. d~ - -  + # +  ~-7- + ] (2.17) 

The singular expansion (2.17) shows that the second derivative 
= -~32do/a# 2, which is the quantum analog of the specific heat of the 

two-dimensional classical Ising model, exhibits a logarithmic divergence, of 
the form cg~(1/4~)ln(1/#2),  which is characteristic of the "Onsager 
universality class." 
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2.3. The Critical Singular i ty  of  Periodic Chains 

In this section, we consider the case where the exchange constants 
form any periodic array, with period M. In other terms, the chain is a 
periodic "crystal,". with a unit cell consisting of M arbitrary couplings 
{el ..... (~M)" 

More precisely, we will perform a perturbative analysis of the bottom 
of the fermionic spectrum, which governs the critical behavior of the model. 
The starting point of this study is the observation that the commutator 
evaluated in Eq. (2.14) vanishes for A = 0. It can therefore be expected that 
a simplification occurs there, somehow. It will indeed turn out that the 
wavefunctions ~b, and ~ ,  admit an expansion in powers of A. The results 
derived below will be used in the scaling analysis presented in Sections 4 
and 5. The expression (2.27) for the velocity of fermionic excitations on an 
arbitrary periodic pattern seems to have been derived for the first time in 
ref. l l, in the context of the classical two-dimensional model. This result 
has been used in refs. 19 and 30, whereas refs. 20, 22, 24, and 27 also 
describe perturbative approaches, somehow similar to the present one. 

Let us assume that q~0 and ~b o are given. For  A = 0, both equations of 
the system (2.6) are decoupled, so that we have the solution 

~b(~ ~ = q~o( - 1)" e o ' " 8 , _ l ,  ~,~o) = ~ o  ( - 1 ) "  ( 2 . 1 8 )  
8 0  ' " ' 8 n  -- 1 

For A small, we expand the wavefunctions as the following power series: 

(~n - -  (0)  (1)  (2)  2 -~b. +~b. A+~b. A + ... 

0 .  = 0 (~ + ~P(~ I>A + ~ 2)A: + ""  
(2.19) 

The first-order terms are determined by the recursion equations 

)/1(o) C > +  ~ , = 1 C -  ~ , = - T,,  
0~)+~ ,/,(1) d(o/ 

v n ' v  n + l =  - - r n  
(2.20) 

from which we obtain 

{5 ~- . .8 .  , ~ , ) = ( _ 1 ) ~ - 1  ~o Z_. 
k = l  8 0 ' ' ' ~ k  1 

n 1 
~ / ( n l ) = ( - - l ) n ( ~ o  ~ 8 0 " * ' E k - - 1  

k = 0 8 k  " " " 8 n  1 

(2.21) 
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The second-order terms are determined by the recursion equations 

~(2) ~//(1) 
~(2) --~- g n l W n _ l ~ - - - r n  

@ (2) _1.. ~ ,/, (2) d(1)  

k~l 1 
with Sl(n) = 2 2 

k = l  l=O Cl " ' ' C k - - 1  

0(~2)=-gt~~ with S2(n)="_. ~y 1+  e2-..g2_ 1 
k = l  /=1 

The above expansion can be recast in matrix form 

from which we obtain 

_ 

(2.22) 

(2.23) 

where ~ ,  is the transfer matrix which describes the propagation across 
one unit cell. We can derive from this expression an approximate 
dispersion relation of the fermionic excitations for A small, in the form 

2 cos(Mq) = ( - 1 )M tr ~cell ~ g l ' ' "  e M [  1 - -  A2SI(M) -] 

1 
-~ [-1 - A2S2(M)] (2.25) 

~ 1  " " " ~ M  

In order to exhibit the physical meaning of this result, we introduce 
the following two parameters: 

1 1 M 
# = ~ l n ( g l . . . g M ) = ~ r  ~ 6,,, (2.26) 

m = l  

in agreement with Eq. (1.4), and 

1 1 M M 
2 2 (2.27) v2-m2 E 

m = l  k = l  

so that the dispersion relation (2.25) assumes the form 

A 2 ~ v2(q2  _.}_/./2) (2.28) 

in the scaling region where A, q, and # are small. The reduced energy gap 
reads 

Ami n ~ v 1#1 (2.29) 
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and the critical point corresponds to # = 0, namely 

M 
el - - ' eM= 1, i.e., ~ 6m=0 (2.30) 

rn--I 

The simple form of this last result shows that the critical point of the spin 
chain with an arbitrary sequence of exchange couplings reads /t = 0, as 
already announced in the Introduction, where # has been introduced in 
Eq (1.4). 

Going back to the periodic case, we observe that the long-wavelength 
fermions have the following massless relativistic dispersion law at criticality: 

A ~ vq (2.31 ) 

where it is understood that v is evaluated under the criticality condition 
(2.30). This value of v thus represents the velocity of the massless fermionic 
excitations. 

Finally, the critical singular part gsg of the ground-state energy for 
#--* 0 is governed by the low-lying fermionic energies, of order A ~ p, for 
which the relation (2.28) holds. We can therefore write the estimate 

t? dq (q2 + ~2)i/2 (2.32) V 

~ - - 2  JO T 

where Q is a cutoff momentum of order unity. We thus obtain 

19 2 Q2 
gsg ~ - ~ #  ln~5 (2.33) 

This result shows that the velocity v of the fermionic excitations 
governs the amplitude of the critical singularity of the ground-state energy, 
and hence that of the logarithmic divergence of the specific heat, in the case 
of an arbitrary periodic chain. We recall that the expression of v has been 
obtained in Eq. (2.27) for any periodic chain. This general result implies 
0 < v ~< 1, the upper bound v = 1 being reached if, and only if, the chain is 
uniform. The result (2.17) is thus recovered (with Q2= 64/e). 

We end up this section by considering the simplest nontrivial example 
of a periodic binary chain, with period two. We denote by A the strength 
of the periodic modulation, so that we have el=exp(3/2), and 
e~ = exp(--A/2) at criticality. Then yields Eq. (2.27) 

1 
v (2.34) 

cosh(A/2) 
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As expected, the velocity assumes its maximal value v = 1 in the situation 
of the uniform chain (3 = 0), whereas it vanishes exponentially for a large 
modulation. 

The results derived in this section are similar to those of ref. 11, 
which concern the classical two-dimensional layered Ising model. Let us 
emphasize that the present situation yields a much simpler expression for 
the velocity v of fermionic excitations. 

3. R A N D O M  C H A I N S  

This section is devoted to the case of disordered chains, where the 
reduced exchange couplings e, are independent random variables, with a 
common probability distribution. This situation is equivalent to the classi- 
cal two-dimensional Ising model with layered randomness, which has been 
studied extensively. (9-1z) We will present an exact scaling analysis of the 
critical region in the weak-disorder regime. Among other outcomes, we will 
obtain the closed-form expression (3.65) for the absolute prefactor of the 
critical singularity, which had not been fully understood in previous works. 
Moreover, besides its own interest, this approach will be used as a test case 
for the heuristic scaling arguments developed in Section 5. 

3.1. General i t ies 

In the following, we make use of the formalism of the invariant 
measure and of the complex characteristic exponent. (5'33-36) Let us 
summarize the main equations of this standard approach to the study of 
spectral problems related to one-dimensional random systems. We start by 
introducing the following Riccati variables: 

Rn = . e . 0 . + ~  _ 1 + A  ~b-2~ (3 .1 )  
0. 0n 

which obey a nonlinear recursion formula 

2 

Rn = 1 + e 2 - A 2 en (3.2) 
R n -  1 

as a consequence of Eqs. (2.6), (2.11). 
The Riccati variables Rn are asymptotically distributed, for n large, 

according to a stationary probability law, which is invariant under the 
transformation (3.2). Throughout  the following, we denote by double 
brackets (( --- )) averages w.r.t, this invariant probability measure. 
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We consider the recursion (3.2) for complex values of the variable A, 
and define a complex characteristic exponent g2(A) by 

f~(A) = / / l n  ( - ~ , +  ~ ) 1 / =  ((ln Rn)) - /~  (3.3) 

where/~ has been introduced in Eq. (1.4). 
When A goes to the real axis, we split the characteristic exponent into 

its real and imaginary parts, according to 

f~(A -/- i0) =7(A)  + i~g(A) (3.4) 

These quantities have the following interpretation (33 36): 

1. The Lyapunov exponent 7(A)> 0 describes the mean exponential 
tMloff of a generic normalizable eigenfunction (~bn, 0n) with energy A : 

~b, ~ 0 ,  ~ e x p [ - 7 ( A )  Inl ] (3.5) 

In other words, the typical extent of the fermionic eigenstates is given by 
the localization length ~(A) = 1/7(A). 

2. The integrated density of states H(A) represents the fraction of the 
excitation energies A~ lying below A, defined as [see Eq. (2.9)] 

f f  1 H ( A ) =  p(A')dA'= lim # { A ~ < A }  (3.6) N~ocN 

The properties recalled above can be demonstrated by means of the 
following expression: 

0,,=(-1) " R ~  '00 (3.7) 
~ : 0  " " " ~ n  1 

The interpretation of the Lyapunov exponent 7(A) as an inverse localiza- 
tion length is rather straightforward, whereas the connection with the 
integrated density of states is established via the following Sturm oscillation 
property. Consider a finite sample, made of N spins, and assume that the 
excitation energies are ordered as A 1 < " �9 < A x. Then the wavefunctions 
~bn or 0n of the fermionic eigenstate number ~ (1 ~< ~ ~< N) have exactly 
( N - ~ )  nodes, i.e., (N-c~)  sign changes. As a consequence, among the N 
corresponding Riccati variables, (N-c~)  are positive and c~ are negative. 

We end up this introductory section by noticing that the explicit 
formulas (2.18) for the wavefunctions ~b,, and 0~ for A = 0  imply that we 
have 

f2(A = 0 ) =  I~l (3.8) 
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This simple and general result confirms that the critical point/x = 0 is 
a singular point, as already announced in the Introduction, and shown in 
Section 2.3 via another approach. Indeed, the characteristic exponent O is 
not differentiable w.r.t./x at criticality (/t = 0) at the bottom of the fermionic 
spectrum (A =0) ,  irrespective of the nature of the exchange couplings. 
Moreover, the localization length ~(A = 0) is infinite at criticality. 

3.2. Weak-D isorder  Expansion 

In the following, we shall be mostly interested in the critical region 
and in the weak-disorder regime. The distribution of the random exchange 
couplings will therefore only enter the analysis through its first two 
moments, namely 

m 
6-~ =/~, 6 ~ = # 2 + A  2 (3.9) 

The average /~, defined in Eq. (1.4), is a measure of the distance to criti- 
cality, as explained in the Introduction, whereas the r.m.s, deviation A 
represents the strength of disorder. Both parameters # and A are assumed 
to be small throughout the rest of Section 3. 

In order to study the influence of quenched disorder on the critical 
behavior of the Ising chain, the most direct approach consists in perform- 
ing a weak-disorder expansion of the characteristic exponent O, along the 
lines of refs. 5, 33, and 34. It is advantageous to perform this expansion for 
a complex fermionic energy A, outside the spectrum. Moreover, it will be 
sufficient for the present purpose to consider the critical region (/x ~ 0). 

The starting point of the analysis is the following. At criticality and 
without disorder, we have 6, =0,  i.e., e,,= 1, so that the recursion (3.2) 
between Riccati variables reads 

1 
R , = 2 - A  2 - -  (3.10) 

R n - - 1  

The fixed points of the above transformation are R = e' (attractive, stable), 
and R = e - '  (repulsive, unstable), where we have set 

t 
A 2 = 2(1 - cosh t) = - 4 sinh 2 (Re t > 0 ,  IIm tt < z )  (3.11) 

We thus get 

f 2 = t  (3.12) 
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In order to generate a systematic expansion of the characteristic 
exponent around its value (3.12), we perform the  change of variable 

e ~Y.--e  ~ R n - e  t 
R~ - , Y.  - - -  (3.13) 

Y , - 1  R , - e  ' 

The new random variables Y, obey the recursion 

e-2 'Y~- l  +a . ( l  + e - t y .  1) 
Y,, - (3.14) 

l +a . ( l  + e - ~ Y . _ l )  

with the notation 

9 
G -  1 

a~ = (3.15) 
1 + e  t 

and the characteristic exponent is expressed as 

O =  t - #  + \\l/In 1 -e-2tY~l T_~n ,)) (3.16) 

or equivalently, 

f2 = t - # + ( ( ln[  1 + a.(1 + e- 'Y . ._  ~)] )) (3.17) 

Let us now derive the expansion of r up to second order in # and A. 
To do so, we expand Eq. (3.17) up to second order in the a n, anticipating 
the behavior Y, ~ a, .  We thus obtain 

g 2 = t - # + - d - s  1 ) ) - *  2 _ 5 a . +  . - .  ( 3 . 1 8 )  

On the other hand, by expanding the recursion (3.14) up to first order, we 
get 

Y,, = e - 2 t Y , -  1 + a, + ... (3.19) 

so that 

and 

an 
( ( Y ' -  l))  = 1 - e  -2 '  (3.20) 

1 ~ 2  1 . + . . .  (3.21) 
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Then, by expanding the definition (3.15), we get 

2 aG = (# ...[_ # 2  _.}_ d 2 _.{_ . . .  ), 
l + e  t 

--5 4 A 2  ~ - ) 
an (1 + et) 2 (~2 + ... (3.22) 

The final outcome of this analysis is 

1 - z 2 A2 1 - -  ,[4 2 
~=t- '~#+--  T -  +~f--T ~ +. . .  (3.23) 

with the notation 

t 
r = tanh (3.24) 

2 

It is worth noticing that the successive terms of the weak-disorder 
expansion (3.23) are more and more singular near the bottom of the 
spectrum ( - A  2 ~ t 2 ~ 4-c 2 --* 0). 

3.3. Scaling Laws and Critical Behavior 

The last observation suggests the existence of a nontrivial scaling 
behavior when t, ~t, and A z go simultaneously to zero at the same scale. 
A quantitative study of this regime is the purpose of the present section. 
We set 

t ~ (3.25) x=A~, y = ~  

and our aim is to show that the characteristic exponent s obeys a scaling 
law of the form 

t2 ~ AZF(x,  y )  (3.26) 

in the weak-disorder regime (A ~ 0 ) ,  keeping the scaling variables x 
(complex) and y (real) fixed, so that one is driven to the bottom of the 
fermionic spectrum ( t - o0 )  and to criticality ( / ~ 0 ) .  We recall the 
hypothesis Re t >0 ,  made in the definition (3.11), implying Re x >0.  The 
fermionic spectrum can be reached via the analytic continuation to t ~ iA. 

The starting point of the analysis consists in expanding the recursion 
relation (3.14) to second order in an. We thus obtain 

e Z ' Y n = Y n _ l + ( 1 - Y  ] l ) a n + ( Y n _ ~ + l ) ( Y 2 _ l - - 1 ) a 2 +  . . .  (3.27) 
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where we have already set t = 0 in the coefficients in the r.h.s. To the same 
order, Eq. (3.27) implies the following recursion relations: 

e Z ' m d m = d m + m ( a ~ - - ~ ) ( d m + l - d m  1) 

m - -  
+ ~ a ~ [ ( m + l ) d m + a + ( m - 1 ) d m _ 2 - Z m d m ]  (3.28) 

among the moments of the invariant measure 

dm = (( ym )) (3.29) 

In the scaling region, the expressions (3.22) simplify to ~ = (y + 1 )d 2, 
2 and a n = A  2, whereas higher-order moments are subleading. As a 

consequence, Eq. (3.28) takes the following limit form: 

4 x d m = 2 y ( d m _ l - d m + l ) + ( m + l ) d m + 2 + ( m - 1 ) d m _ 2 - 2 m d m  (3.30) 

and the expression (3.17) of the characteristic exponent yields the scaling 
form (3.26), with 

F(x, y ) = x +  ydt  + 1(1 - d 2 )  (3.31) 

The determination of the scaling function F(x, y)  thus amounts to 
finding the scaling forms d~ and d 2 of the first two moments of the 
invariant measure. This can be done as follows. We introduce the 
generating function of the moments din, namely 

f ( z ) =  ~ dmzm= (3.32) 
m )  i 1 - z Y , / /  

Tile recursion relation (3.30) is equivalent to the following first-order linear 
differential equation for f(z):  

( 1 - z2) 2 z d~+ [ - 4xz  2 - 2yz( 1 - z 2) + z 4 - 1 ] f 

= zZ[d2 - z  2 - 2y(d~ + z)] (3.33) 

This equation can be solved by "varying the constant." To do so, we first 
solve the homogeneous equation, obtained by setting the r.h.s, of Eq. (3.33) 
equal to zero. The solution reads 

z [ l + z ~  -~" { 2 x z 2 )  
f o ( z ) = C ~ _ z 2 ~ - f C ~ _ z )  exp \ l _ z 2  j (3.34) 

822/72 3-4-2 
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where C is a constant. We then look for a solution of the full equation 
(3.33), of the form (3.34), where C(z) is now an unknown function. We 
thus get 

-Y ( 2xz2  
dC 1 ( l + z )  exp [d2-z2-2y(d~+z)]  (3.35) 
dz 1 - -  Z 2 \ 1 - z J 1 - z 2] 

The function C(z) is obtained by integrating this last equation. The defini- 
tion of C(z) implies C(0)=  d~, since f ( z )~  C(O)z for z ~ 0. On the other 
hand, the decay of the moments dm for large m implies C( _+ 1 ) = 0. Indeed, 
otherwise the generating function f(z) would be exponentially divergent as 
z ~ _+ 1. These three conditions determine the moments d~ and d2. Some 
algebra yields the scaling function F(x, y) as the ratio of two integrals, 
namely 

J(x, p) 
F(x, y ) - - -  (3.36) 

,~(x, y) 

with ( 2xC) 
J ( x , y ) = f  , l~dZ2 \ l_z ]  exp l_z2  j 

(3.37) 

J(x'Y'=f+_l'l---dZ-z2IX+YZ+~(1-z2'7(l+Z~Yexp(J\l-z] l 2xz2)-z2j 

It turns out that the integrals defined just above can be expressed in 
closed form in terms of Bessel functions, by means of the change of variable 
z = tanh(~/2), and of integrations by parts. We thus obtain 

d x[Kv+l(x)+K~, l (x)]  
F(x, y ) =  - X ~ x l n  K,.(x)- " 2K~.(x) (3.38) 

where 

X,,(x) = j _ ~. 2 exp(y~ - x cosh ~) (3.39) 

is the modified Bessel function of the third kind (ref. 32, Vol. II). 
The exact expression (3.38) describes the full scaling behavior of the 

characteristic exponent in the weak-disorder regime and close to criticality. 
A similar result is reported in ref. 9, although its quantitative consequences 
have not been explored completely. 

The result (3.38) shows that F(x, y) is an even function of y, implying 
that the characteristic exponent is symmetric in both phases # > 0  and 
# < 0  in the scaling region. In the following, we restrict the analysis to 
# > 0, i.e., y > 0, for definiteness. There are a priori six interesting limiting 
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situations. The case # ~ A 2, to be referred to as the random critical situa- 
tion, is subdivided into regime (i) ( t ~ p ) ,  regime (ii) (#~t~A2) ,  and 
regime (iii) (t>>A2). Similarly, the case A ~ / ~ ,  to be referred to as the 
weak-disorder situation, is subdivided into regime (iv) (t ~ A2), regime (v) 
(A2,~ t ~ p), and regime (vi) (t ~> #). Some aspects of these various cases 
will be investigated in more detail, although we do not aim at a systematic 
exposition of these matters. 

3.3.1. The W e a k - D i s o r d e r  Limit. Let us consider first the case 
where the strength of disorder A 2 goes to zero first. Both scaling variables 
x and y thus go to infinity simultaneously. This situation embraces regimes 
(v) and (vi). In this limit, the integral representation (3.39) for the Bessel 
function Ky(x) can be estimated by the saddle-point, or steepest-descent, 
approximation, which can be improved via a systematic expansion around 
the saddle point. We thus obtain 

(zr tank ~ )  1/2 
Ky(X) = 2y exp[y(~ c - coth ~c)] 

[ tanh ~c(5 tanh2 ~ c - 3 ) + - - . ]  (3.40) 
x 1 + 24y 

where the saddle-point value ~c is such that sinh ~c = y/x. A few more 
correction terms are known explicitly (ref. 32, Vol. II). 

By inserting the expansion (3.40) into the result (3.38), we obtain 

X 2 X2(4y 2 -- X;) 
F(x, y ) =  (xZ+y2)l/2+2(x2 + y2) t- 16(x2 + y2)5/2 + .-- (3.41) 

The leading term yields the expected scaling behavior g? = (t 2 +#2)t/2 
of the characteristic exponent of the uniform chain, in the absence of 
disorder, implying the estimate H(A)~ (1/~)(# 2 - A 2 )  1/2 for the integrated 
density of states, in accord with the Bloch dispersion law A2~ q2+/~z ]-see 
Eqs. (2.15), (2.28)]. The correction terms in the result (3.41) are propor- 
tional to the successive powers of A 2. Only the last correction, proportional 
to A 4, affects the imaginary part of the scaling function, and thus the 
fermionic density of states. 

3.3.2.  The Critical Point .  The behavior of the characteristic 
exponent at the critical point is described by the scaling function 

xKI(x) 
F(x, 0) (3.42) 

Ko(x) 

obtained by setting y = 0  in the result (3.38). 
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For x large, i.e., in regime (iii), the standard expansion of the Bessel 
function (ref. 32, Vol. II) yields 

1 1 1 
F(x, O)= x + =-x--+x---s  + "'- (3.43) 

Z ~SX ~ X -  

The first two terms of this expansion match with the behavior of the result 
(3.23) for # = 0 .  

The opposite situation of x small, i.e., regime (ii), is by far more inter- 
esting, since it describes the true behavior of the characteristic exponent at 
the bottom of the spectrum of the random problem. We have (ref. 32, 
Vol. II) 

Ko(x) = - ln(x/2) - 7E + (9( x2 In x) (3.44) 

where 7z ~ 0.57721 denotes Euler's constant. 
The expression (3.44) yields the following logarithmic behavior for the 

scaling function of the characteristic exponent: 

1 
F(x, 0) ,~ (3.45) 

ln(2/x) - 7E 

By inserting the continuation of the result (3.45) to t = iA into Eq. (3.4), we 
obtain the following behavior for the integrated density of states at 
criticality: 

with 

A 2 

H( A ) ,,~ 2[ln2( Ao/  A ) + rt2/4] (3.46) 

A o = 2 e - ~ A  2 ~ 1.12292A 2 (3.47) 

This estimate implies the following very strong divergence for the density 
of states: 

A 2 ln (Ao /A)  
p( A ) .~ A [In2( Ao /A  ) + ~z2/4] (3.48) 

Analogous inverse logarithmic laws affect the spectra of several other one- 
dimensional random models at special points, e.g., harmonic chains, (33' 37) 
the Anderson model with nondiagonal disorder, or biased classical hopping 
models. (38~ 

It turns out that the estimates (3.46), (3.48) are still quantitatively 
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correct for an arbitrary distribution of the random exchange couplings, 
beyond the weak-disorder approximation. In that general situation, the 
cutoff A0 is no longer given by the expression (3.47), but depends on the 
distribution of the random exchange couplings. This can be demonstrated 
by expanding Eq, (3.14) to a higher order in a n and by checking explicitly 
that the higher-order terms do not alter the nature of the logarithmic 
behavior (3.45). 

3.3.3. The Vicinity of the Critical Point. Before returning to 
tile main subject of this article, namely the critical behavior of the ground- 
state energy, we have to determine first the behavior of the integrated 
density of states in the vicinity of the critical point, i.e., for x small and 
nonzero values of the scaling variable y. 

The form of the scaling function F(x, y) for x small and arbitrary y 
can be determined by means of the following formula: 

where 

Ky(x) - 2 sin zy E1 y(x) - Iy(x)] (3.49) 

Iy(x) = ~ o  k! v ( y  + k + 1) 

is the modified Bessel function of the first kind (ref. 32, Vol. II). 
We thus obtain 

(x/2) -y  F(1 + y) + (x/2) y F(1 - y) 
F(x, y) .~ (3.51) 

(x/2)-Y F ( y ) +  (x/2) y F ( - y )  

In this result, which generalizes Eq. (3.45), each of the four terms is 
accompanied by a series of subleading powers of x 2, in virtue of the 
expansion (3.50). 

The behavior of the density of states near the bottom of the spectrum 
slightly off criticality is obtained by expanding Eq. (3.5l) for x ~ 0, namely 

F(x, y) = y + F2(y ) sin zy + .. .  (3.52) 

We notice that the value F(0, y) = y for x = 0 and y > 0 is in accord with 
the general result (3.8). 

By taking the imaginary part of the expression (3.52), we obtain 

H 2A2 ( A'~2~" 
~ \ 2 - ~ j  (3.53) 
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This last estimate holds true for Ixl ~ y, i.e., A ~/~. This range encompasses 
regimes (i), (iv), and (v). 

Equation (3.53) implies that the density of states assumes the following 
scaling form for large values of y, which describes the tail of the spectrum 
induced in the region A ~ # by a small amount of disorder: 

H ~  exp ( - ~ 2  In e~  ) (3.54) 

This exponential falloff is reminiscent of Lifshitz tails (39~ which are present 
near generic band edges in the spectra of disordered systems, although the 
present situation is different from the usual case of, e.g., the Anderson 
model with diagonal disorder. 

It is also worth noticing that the result (3.53) implies in particular that 
the fermionic spectrum of the random chain extends down to A = 0 off 
criticality, whereas there is a finite gap, given by Eq. (2.29), in situations 
where the modulation is bounded. 

3.3.4. The Ground-State Energy. In order to evaluate the 
singular part of the ground-state energy of the disordered spin chain, we 
come back to the result (3.51), concerning the characteristic exponent in 
the scaling region, close to criticality (y ~ 0). We find it convenient to set 

A =2A2e o (3.55) 

so that we have x=2iexp( -O) .  
After some algebra, we obtain the following expression: 

2A 2 
H ~  (3.56) 

F2(y) exp(2y0) + F2( - y) exp(--2yO) - 2rc/(y tan roy) 

for the integrated density of states, which holds up to terms of relative 
order exp( - 20). 

The singular part of the ground-state energy can be estimated by 
integrating Eq. (2.8) by parts, namely 

O~sg(kt) ~ �89 H(O)dA(O)-{~t=O} (3.57) 
0 

where 0o is an inessential cutoff, and where nonsingular boundary 
contributions have been omitted. 

A first approach to the determination of the critical singularity consists 
in taking the leading behavior of the result (3.56) as y ~ 0, considering the 
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product yO as a fixed quantity. The lower bound of the integral in 
Eq. (3.57) can then be put equal to zero. We thus obtain 

A 4 
4+ + - 5 -  ~ ( Y )  (3.58) 

with 

Y ( y ) =  e-~ dO 02 sinh 2 yO (3.59) 

The scaling function ~- is clearly an even function of y. It can be brought, 
by means of two integrations by parts, to the following form (36'4~ 

fO z~ m ~ ( y )  = e -~ dO In sinh yO B2m 
yO ~+ ~m (2y)2m 

m~>l 

= - - y - ln(2y) (3.60) 

where gqz) is the logarithmic derivative of Euler's function F(z), and the 
B,, are the Bernoulli numbers (ref. 32, Vol. I). 

A similar result has been established (9' 1o) in the case of the two-dimen- 
sional classical Ising model. As a matter of fact, the estimate (3.58) is 
wrong by a constant prefactor in the weak-disorder regime, as will become 
clear in a while. 

The function i f ,  and functions with a similar analytic structure, are 
ubiquitous in the expressions of the scaling laws describing the spectra of 
random systems close to band edges. (36' 4o) 

The result (3.58) shows that the ground-state energy is infinitely 
differentiable, but nonanalytic at the critical point ( y = 0 ) .  Indeed, the 
Bernoulli numbers exhibit the following asymptotic growth: 

( - 1 )  m 1 2(2m)! 
B2,~ ~ (27r)2,, (3.61) 

As a consequence, the series representation (3.60) is divergent, and only 
determines the function ~- up to exponentially small terms in l/y. These 
ambiguous parts could be used as a vague definition of the "singular part" 
of the ground-state energy. 

It turns out that the result (3.58) provides a quantitative meaning to 
the notion of critical singularity, by means of an analytic continuation in 
the complex y plane. We recall that ~ ' (y )  is an even function. Assume that 
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we perform its analytic continuation from y > 0 to the whole half-plane 
R e y > 0 ,  and from y < 0  to the whole half-plane R e y < 0 .  Both 
continuations do not match along the imaginary axis. More precisely, the 
discontinuity between both of them at the point y = i [Yl can be evaluated 
by means of the difference formula for the ~ function. We thus obtain the 
exact expression 

2~i 
~ ( i  [y[ + 0)-~-~(i  lYl-O)=e,~/ly I (3.62) 

We define the singular part of the ground-state energy as 

( - rcA2~ (3.63) fiE(#) =- gsg(i ]#[ + 0 ) -  g~g(i ]#[ - 0 ) ~  - iTrA4 exp I#[ J 

As we have already mentioned briefly, the estimate (3.63) misses a 
constant prefactor. Indeed, a more accurate expansion of the expression 
(3.56) for H, including terms of relative order y2, considering still the 
product yO as fixed, leads to the following formula: 

Zl4y 2 f ' ~  e 0 dO 

gsg ~ ~ 2o sinh 2 yO - 7E Y sinh 2yO + (rc2/4 2 2 
(3.64) 

0 +7E)Y 

The singular part 6g(#), which we define as the discontinuity used in 
Eq. (3.63), can be expressed from Eq. (3.64) as a contour integral which 
encircles once in the counterclockwise direction the poles of the integrand 
with Re 0 > 0. The quantity 6g(#)  thus defined is independent of the cutoff 
00. The poles come in close pairs situated at O'~nrc/lyl (n>~l), where 
s i n h y O = i s i n ( l y l O )  is very close to zero. The leading contribution to 
6 g ( p )  comes from the nearest pair of poles ( n = l ) ,  which lie at 
0 = rc/lYl + 7E + #t/2. Residue calculus yields 

6~(t.t) ~ -- 2iA 4 exp(--7E) exp I#l J (3.65) 

The standard analysis which led to Eqs. (3.58) and (3.63) along the 
lines of refs. 9 and 10 thus misses a prefactor of (2/zt)exp(--yE)~ 0.35743, 
which is generated by an unexpected finite shift of the pole positions. 
A similar phenomenon had been underlined in ref. 12, in the framework of 
exactly solvable classical random Ising models. 
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4. APERIODIC  CHAINS,  THE CASE OF A B O U N D E D  
FLUCTUATION 

After having studied in detail both extreme situations of periodic and 
random chains, we now consider the general case, where the reduced 
exchange constants {en} form an arbitrary aperiodic sequence, with 
physically reasonable homogeneity properties, so that at least the fermionic 
density of states (2.9) exists. 

4.1. General Results 

In order to study this problem, it is natural to look at periodic 
approximants, obtained by truncating the sequence of the {~n} to the first 
M ones and repeating this finite motif, as a unit cell, in a periodic way. The 
properties of the full aperiodic system are then recovered in the M-~ oo 
limit. 

We already know from Section 2.3 that the transverse-field Ising chain 
has a unique critical point, defined by the condition #--0,  where p is 
defined in Eq. (1.4), for any sequence of exchange couplings {Jn}. The 
main goal of the rest of this paper is to study the form of the critical 
singularity of the ground-state energy in the critical region, i.e., for/~ ~ 0. 
The starting point of our investigation is the outcome of Section 2.3 
concerning periodic chains, and especially the expression (2.27) for the 
velocity v of the fermionic excitations at criticality. 

It has become clear from our generalized Harris criterion, exposed in 
the Introduction, that the key concept is that of the fluctuation of the 
exchange couplings. Consider indeed again the partial sums gn defined in 
Eq. (1.7). The sequence of reduced exchange couplings {~n} will be said to 
have a bounded fluctuation if the g~ are bounded for any number n of 
couplings. If this holds true, it is easily realized that the velocities vM of the 
fermionic excitations on the periodic approximants with M bonds are 
bounded away from zero and from infinity. Under reasonable assumptions, 
the vM will admit a finite limit v as M ~ oo. 

The following two main situations are thus to be considered: 

1. The velocities vM of the periodic approximants have a finite limit 
v as M ~ oo. This situation is usually met for exchange couplings with a 
bounded fluctuation, in the sense defined above. Typical examples of this 
situation, to be treated below, include quasiperiodic chains, the Thue- 
Morse chain, and the random dimer model. The Ising chain then belongs 
to the Onsager universality class of the uniform spin chain, with an 
energy gap linear in [/.t[, according to Eq. (2.29), and a logarithmic critical 
singularity of the ground-state energy given by Eq. (2.33). In other words, 
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a modulation of the couplings with a bounded fluctuation is not sufficient 
to alter the critical behavior of the uniform chain. 

2. The velocities vM of the periodic approximants diverge  as M--+ oo. 
This second situation is generically met for exchange couplings with an 

u n b o u n d e d  f l u c t u a t i o n .  Typical examples of this situation include random 
chains, and deterministic chains generated by non-Pisot inflation rules, to 
be treated below. This case corresponds formally to v=0 ,  so that the 
critical singularity of the ground-state energy is of a weaker type than that 
of the uniform Ising model. 

4.2. Examples of  Systems w i t h  a Bounded Fluctuat ion 

4.2.1. Quasiperiodic Chains. An important class of aperiodic 
sequences with a bounded fluctuation is provided by quasiperiodic 
sequences. Consider the exchange couplings given by the formula 

6, = f ( n ~ )  (4.1) 

where f is a periodic function of one variable, with unit period, and ~o an 
irrational modulation wavenumber, or incommensurability ratio. 

The sequence {6n} so defined is quasiperiodic. Indeed, its Fourier 
transform consists of delta functions situated at values of the wavevector of 
the form q = 2r~(k + l~), where k and I are two integers. 

In most cases, the sequence defined in Eq. (4.1) has a bounded 
fluctuation. More precisely, we have 

g ,  = g(nco)  (4.2) 

where the function g, called the "hull function" of the sequence, (14) is also 
periodic, with unit period. Moreover, the functions f and g are related 
through the identity 

f ( O )  -- g(O) - g(O - c~) (4.3) 

as a consequence of Eq. (1.7). 
Let us now evaluate the velocity v by means of its expression (2.27). 

We have 

2 2 exp[-2g(mco + kco) - 2g(mce)] ~m+l " ' ' ~ ' m + k  ~ 

Using the equidistribution of {m~} modulo unity, we can show that there 
exists a limit velocity as M--, ~ ,  given by the following integral formula: 

1 1 1 
e zg(~ dO.  I ~ e - 2 g ( ~  dO (4.4) 

:o Jo 
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This result provides a quantitative prediction concerning the critical 
singularity of an arbitrary quasiperiodic Ising chain with two incommen- 
surate periods. It can be easily generalized to sequences with N incommen- 
surate periods, by replacing in Eq. (4.4) the 0 integrals by integrals over the 
( N -  1 )-torus. 

Let us now consider in more detail a few examples of physical interest. 

Example 1. The Quasicrystalline Chain. The most popular way of 
generating quasiperiodic tilings which model quasicrystalline structures 
consists in the so-called cut-and-projection method/4~) One-dimensional 
quasiperiodic binary sequences can be generated within this framework by 
drawing a straight line with slope t = tan ~b and projecting onto it all the 
lattice points of the "strip" 0 ~ y - tx < t + 1, with integer coordinates. 

To this geometrical construction corresponds the following discon- 
tinuous f function: 

f ( O ) = ~ ( 1 - c o ) A  for 0...<0<co ( m e a l )  
for co~<0<l  ( m o d l )  (4.5) 

with co = t/(t + 1), and where A is the strength of the modulation, so that 
exp(A) is the ratio between both values assumed by the an. The associated 
hull function reads 

g(O) = AO (0 ~< 0 < 1 ) (4.6) 

Hence the general result (4.4) yields 

A 
v = sinh A (4.7) 

This result is independent of the incommensurability ratio co, provided 
the latter is an irrational number. It had been established (19"2~ in the 
particular case of the Fibonacci chain, corresponding to co = 1/r 2, where 

=(1  + , , /5 ) /2  is the golden mean. For  rational values of co, periodic 
chains are generated. For co = 1/2, the result (2.34) is recovered, whereas, 
e.g., for co = 1/3 and co = 2/3 we obtain 

3 
v - (4.8) 

1 + 2 cosh(2A/3) 

Example  2. The Harmonic  Incommensura t e  Chain. Our second 
example of a quasiperiodic chain is defined by the following harmonic 
modulation: 

A 
f (O) = ~- cos 2~r0 (4.9) 

Z 
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The associated hull function reads 

A sin(2n0 + no)) 
7 g(O) = 4 sm rico 

so that we obtain 

(4.10) 

v 2 sin no) 

where I o denotes the modified Bessel function of the first kind and order 
zero (ref. 32, Vol. II). 

In the present case, the velocity of fermionic excitations depends on 
the incommensurability ratio co. In the regime of a long modulation 
wavelength 2 = l/e)~> 1, this velocity vanishes exponentially as 

v ~ exp ( -2A~ (4.12) 
2nJ 

(Counter-)Example 3. Circle-Mop Sequences. We end up this 
section by describing a class of binary sequences which generically exhibit 
a weakly unbounded modulation in spite of their quasiperiodic nature. 
These mathematical objects are defined by a circle map, (16' 17) which is a 
generalization of the cut-and-project model, obtained by allowing the 
discontinuity point ~ of the f function of Eq. (4.5) to be different from the 
modulation wavevector co, namely 

f(O)=f(I~A~)A for 0~<0<~ ( m o d l )  
for ~ < 0 < 1  ( mo d l )  (4.13) 

It has been shown (15~ that the circle-map sequence {6n=f(nco)} 
possesses a hull function and a bounded fluctuation if, and only if, the 
parameters co and ~ obey the following "Kesten condition"(42): 

~=rco (rood 1) (4.14) 

for some (positive or negative) integer r. In particular, the cut-and-project 
algorithm, exposed in Example 1 above, is recovered for r = 1. 

Whenever the Kesten condition (4.14) holds, the hull function g(O) can 
be written explicitly. (16) This outcome yields the following expression, 
assuming r ~> 1 for definiteness: 

r 

v 21 _ 4rZA 21 ~ e2~k(e-2r~0k i e 2r~0k) 
k = l  

x ~ e 2AZ(e2rA~ 2rZOl 1) (4.15) 
/ = l  



Aperiodic Quantum lsing Chain 445 

with 0 o = 0 < 0 1 <  " ' ' < O r _ l < O r - ~ l ,  and {01,...,0 r l} is the ordered 
sequence of the numbers me) (rood 1), for m --- 1,..., r -  1. 

For generic values of (co, ~), which do not fulfill the Kesten condition 
(4.14), the circle-map sequence has an unbounded fluctuation, even though 
it is a quasiperiodic sequence. The law of divergence of the partial sums gn 
depends in a complicated fashion on Diophantine properties of both 
parameters (see, e.g., ref. 43). The typical case is that of a logarithmic 
divergence of the fluctuation, (15) which is sufficient for the velocity v to 
,vanish, and thus for the Onsager singularity to be altered. We will show in 
Section 5.2 that this situation corresponds to a continuously varying 
negative specific heat exponent e. 

4.2.2. T h e  R a n d o m  D i m e r  Mode l .  The random dimer chain is 
an interesting example of a random sequence {6,}, so that the associated 
fluctuation gn is bounded. Hence the model, although it is disordered, 
belongs to the Onsager universality class. 

The model is defined as a random mixture of "dimers," i.e., binary 
molecules, which are either A B  or BA, chosen independently with 
respective probabilities p and ( l - p ) .  We attribute to the letters two 
different exchange couplings, namely 6A =A/2 and 6 B = - A / 2 .  In other 
words, we have, independently for every k, 

{ 6 2 k _ , = A / 2 ,  a 2 k = - - A / 2 }  

{62e_, = - -A /2 ,  a2k = A/2} 

with prob. p 
(4.16) 

with prob. 1 - p  

This definition ensures that the fluctuation is bounded, since it can assume 
only three values, namely gn = 0, _+ A/2. 

The evaluation of the velocity v goes as follows. First, we have the 
identity e2k-~e2k = 1, so that only the products of one or two consecutive 
couplings en remain in the expression (2.27). Second, we have, in the sense 
of averaging over disorder, 

e22g= ( 1 - p ) e  a +pe  -a,  e2k+2 , =pe  a + ( 1 - p ) e  -~  (4.17) 

and hence, in the sense of Cesfiro averages, as introduced in Eq. (1.4), 

2 1 2 G = ~(~2k- 1 + e~k) = cosh A 

2 2 = 1( 1 + g2k g2k+2) = 1 +2p(1- -p)  sinh 2 A ~n~'n+l 
(4.18) 

We thus obtain 

1/v 2 = coshZ(A/2)[1 + 4p(1 - p )  sinhZ(A/2)] (4.19) 
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For p - - 0  or p - -  1, the dimer chain is a periodic binary chain, and the 
result (2.34) is recovered. In the most random situation of the symmetric 
dimer chain (p = 1/2), the velocity assumes its minimal value, namely 

1 
v - cosh2(A/2) (4.20) 

4.2.3.  T h e  T h u e - M o r s e  Cha in .  The Thue-Morse sequence is a 
simple example of an aperiodic deterministic sequence which is self-similar, 
owing to its recursive construction by iteration of a substitution, i.e., infla- 
tion rules. Some general formalism about substitutions will be presented in 
Section 5.1. 

For  the time being, we consider the sequence defined by the following 
substitution: 

A ~  (4.21) A B  

a" ~ BA 

By the repeated action of these rules, starting with the letter A, we generate 
an infinite binary sequence, ~ = A B B A B A A B B A A B A B B A  .... known as the 
Thue-Morse sequence, which has remarkable arithmetical properties. The 
reader interested in a more mathematically oriented background is referred 
to ref. 44. 

A numerical sequence of exchange couplings is defined by taking the 
value 6, = A/2 if the nth letter in -~ is an A, and the value 6, = - A/2 if the 
nth letter in s is a B. The sequence so defined is nothing but a particular 
configuration of the random dimer chain considered in Section 4.2.2. It has 
therefore a bounded fluctuation. The Thue-Morse sequence is nevertheless 
neither periodic nor quasiperiodic. As a matter of fact, its diffraction spec- 
trum (Fourier transform) does not contain any Bragg peak; it is known to 
be a purely singular continuous measure. (44) 

It can be shown, along the very lines of the previous example, that the 
velocity v for the Thue-Morse sequence coincides with that of the 
symmetric random dimer chain, namely 

1 
v = coshZ(A/2) (4.22) 

This result has already been obtained in ref. 27. 
Surprisingly enough, it turns out that the periodic sequence with motif 

ABBA,  the symmetric (p = 1/2) random dimer sequence, and the aperiodic 
deterministic Thue-Morse sequence all have the same value for the velocity 
v of fermionic excitations. This quantity is therefore fully insensitive to the 
"type of order" of the structure, and especially to its Fourier spectrum. 
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5. A P E R I O D I C  C H A I N S .  THE CASE OF AN U N B O U N D E D  
F L U C T U A T I O N  

5.1. The Generic  Case: P o w e r - L a w  Fluctuat ion 

We have shown in the beginning of Section 4 that the critical 
singularity of the Ising chain in a transverse field is weaker than the 
Onsager singularity whenever the sequence of exchange couplings has an 
unbounded fluctuation in the sense defined in the Introduction. This result 
confirms the generalized Harris criterion exposed there. 

The case of independent random exchange couplings has been studied 
in Section 3. We have shown that the critical singularity is of an essential 
type, namely that all the derivatives of the ground-state energy w.r.t, the 
temperaturelike variable /~ are finite at the critical point ~t = 0. We now 
investigate the case of an arbitrary sequence of exchange couplings with an 
unbounded fluctuation. Examples of such sequences of physical interest 
are provided by binary self-similar sequences, generated by non-Pisot 
substitutions, a concept to be defined later. 

Some general formalism about substitutions will be needed. Let us 
take, for definiteness, the example of the following substitution rules, which 
have been described in refs. 45 and 46, in connection with nonquasiperiodic 
binary tilings of the plane with fivefold symmetry: 

; ~ AAAB (5.1) 
a: BBA 

We consider the words Ak=ak(A) and Bk=ak(B) obtained by the 
repeated action of the substitution rules on the initial letters. Since cr(A) 
begins with A, the A~ converge to an infinite sequence X, which is left 
invariant by the substitution a, and hence self-similar. 

To the above rules is attached the substitution matrix 

(number ofA'sina(A) number of A's in a(B)) (3 12) (5.2) 
M = \number of B's in a(A) number of B's in a(B)] = \1 

The eigenvalues and eigenvectors of the matrix M govern most geometrical 
characteristics of the sequence X. The densities (PA, Pe) of both letter 
types are given by the normalized right eigenvector associated with the 
eigenvalue 21 witfi largest modulus, which is real and positive, in virtue of 
the Perron-Frobenius theorem. 

The sequence of exchange couplings at criticality is obtained by setting 
(~n=(SA=pBA (respectively, 6n=cSB=--pAA) if the nth letter in the 
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sequence S is an A (respectively, a B), where A > 0 denotes the strength of 
the aperiodic modulation. 

We are led to wonder whether a sequence generated by substitution 
rules has a bounded fluctuation or not. The answer is simple. The demarca- 
tion line lies between Pisot and non-Pisot substitutions. The same criterion 
plays a central role in the study of the diffraction spectra (i.e., Fourier 
transforms) of self-similar chains and tilings. ~45' 47-49) 

1. A substitution is said to have the Pisot-Vijayaraghavan property, 
or Pisot property for short, C45"48) if the second largest eigenvalue 22 of the 
associated matrix is smaller than unity in modulus. This terminology 
originates in the closely related concept of Pisot algebraic numbers. (5~ 
The sequences generated by Pisot substitutions have a bounded fluctua- 
tion, and usually a discrete diffraction spectrum (Fourier transform). They 
provide examples of self-similar quasiperiodic--or almost periodic-- 
structures. 

2. A substitution such that 122[~> 1 is said to be non-Pisot. A non- 
Pisot substitution generates sequences for which the fluctuation gn defined 
in Eq. (1.7) diverges as a power law. This can be understood as follows. 
The length of the word A~, i.e., the number of its letters, scales as 2~. The 
associated fluctuation of the exchange couplings, i.e., the sum g(Ak) of the 
fin associated with the word Ak, does not scale as 2~, but only as 1221 k 
Indeed, otherwise the model would not be at criticality. Eliminating the 
generation label k between both above estimates, we obtain the power law 
gn ~ n~, where the "wandering exponent" fl reads 

In 1221 
= ( 5 . 3 )  

in 21 

A more accurate result has been shown in a rigorous way, (52) namely 

( l n n ~  
g" ~ nPF \ ln  2, 2 (5.4) 

where the amplitude F is a "fractal function," which is periodic in its 
argument, with period unity, and continuous, but nowhere differentiable. 

In the case of the above example, the substitution matrix M has 
been given in Eq. (5.2). Its eigenvalues are 2 , = 2 + z = 3 . 6 1 8 0 3  and 
)~2 = 3 - r  = 1.38197, where r = (1 + x/5)/2 denotes the golden mean. We 
have PA = Z -  1 = 1/r and pB= 2 -  ~ = 1/r 2. The substitution is non-Pisot, 
with a wandering exponent fi = 0.25157. 

The self-similar sequence {6,} describing the couplings at criticality 
possesses highly nontrivial correlations, so that the explicit scaling analysis 
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of Section 3 cannot be made in the present case. We have nevertheless 
developed a heuristic scaling approach, according to which the critical 
singularity is of an essential type, which  is determined by the wandering 
exponent ft. 

The argument uses the formalism of the complex characteristic expo- 
nent introduced in Section 3. It goes as follows. Consider a large periodic 
approximant to the structure, with M ~> 1 exchange couplings per unit cell. 
A natural choice consists in taking a word Ak for such a unit cell. The 
result (2.27) implies that typical values of the velocity v are of order 

vty p ~ exp( --a AM ~) (5.5) 

for some constant a, which may depend on the more quantitative meaning 
that is given to the above estimate, like, e.g., the average of v taken over 
all the words with length M present in the sequence. Such an accuracy is 
not needed in the present argument. 

We expect that the wavefunctions of the first low-lying fermionic 
excitations (with A ~ 1) are very similar in the aperiodic structure and in 
its large approximants (M>> 1), at least for a weak modulation of the 
exchange couplings (A ~ 1 ). As a consequence, we can infer from the initial 
dispersion relation A ~ vq of the approximants that a scaling law of the 
form A ~/Atypq holds for both q and H of order a few times 1/M. We thus 
obtain 

( (5.6) 
g ~ \ l l n A r ]  

and, using Eq. (3.4), 

A 1/p 

(2 ~ ]In tl (1-a)/a (5.7) 

The critical singularity of the ground-state energy can then be 
evaluated as follows. The singular part ~g(/~) is generated by the contribu- 
tion to the integral (2.8) of the lowest values of the fermionic excitation 
energies A over a range 6A which can be estimated by equating the result 
(5.7) for p = 0  and t r  with the exact expression (3.8) for ~tva0 and t = 0 .  
We thus obtain 

gsg(p)~exp[-C(A I#l-~) ~/~1 ~)l (5.8) 

The scaling results (5.6)-(5.8) are the main outcome of this section. 
They are supposed to give the correct dependence in the variables A, t, and 
#, respectively. The dependence on A holds a priori for A ~ 1. We have thus 

822/72/3-4-3 
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shown that the ground-state energy has an exponentially small essential 
critical singularity, as soon as the wandering exponent/~ is not zero. 

It is remarkable that the results (5.6)-(5.8) coincide with the outcomes 
of the exact scaling analysis of Section 3 in the case of independent random 
couplings, which corresponds to /~= 1/2 [see, respectively, Eqs. (3.46), 
(3.45), and (3.65)]. 

We have verified the above general results by means of numerical work 
in the case of deterministic aperiodic sequences generated by substitutions. 
We have considered the following three examples of non-Pisot sequences: 

Example 1. The sequence generated by the substitution defined in 
Eq. (5.1). This example corresponds to the value /~=0.25157 of the 
wandering exponent. 

s 2. The Rudin-Shapiro sequence. Besides its arithmetical 
properties, (44) this sequence can be defined by the following substitution 
rules, acting on four letters: 

A --* AC 
B--+ DC 

~: (5.9) 
C ~ A B  
D--* DB 

A binary sequence is obtained by associating the value 6n--A/2 to the 
letters A and C, and the value 6, = - A / 2  to the letters B and D. The 
Rudin-Shapiro sequence has the remarkable property that the intensity 
S(q) = 1 of its Fourier transform coincides with the white-noise spectrum of 
a sequence of independent random variables. In other words, the sequence 
has no nontrivial two-point correlations, and a wandering exponent 
/~ = 1/2. This last property is in accord with the general result (5.3), since 
the eigenvalues of the 4 x 4 Rudin-Shapiro substitution matrix are 2, 
+ xf2, and 0. 

Example 3. The substitution 

; 2  ABBB (5.10) 
a: AAA 

is one of the simplest cases with a "large" wandering exponent /3 > 1/2. 
Indeed, the eigenvalues 21 = (1 + x / ~ ) / 2  = 3.54138, and 22 = (1 - x / ~ ) / 2  = 
- 2.54138 yield/3 = 0.73760. 

For each of the above three examples, we have evaluated numerically 
the characteristic exponent Q out of the spectrum for small real values 
of t. To do so, we have used the recursion relation (3.2) to generate a long 
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sequence of 10s-106 Riccati variables for every value of t, starting, e.g., with 
R0 = oe, and evaluated D according to the formula (3.3). 

Figure 1 shows plots of ~2~/(1 ~) against Iln tl for two moderate 
strengths A of the aperiodic modulation in each case. The very good 
least-square fits, shown as dashed lines, confirm the t dependence of the 
prediction (5.7). Oscillations around the mean power-law behavior are also 
clearly visible. They reflect the self-similarity of the underlying structure 
under a discrete dilatation group generated by the scaling factor 21. 

More surprisingly, the A dependence of the characteristic exponent is 
found in very good agreement with the small-A power-law estimate (5.7), 
even though the values of the strength of the modulation A are of order 
unity. In order to illustrate this, we have extracted effective exponents flefr 
from the ratio of both fitted slopes shown on Fig. 1, for each example, 
assuming that Q is exactly proportional to A 1/~. We thus get the following 
striking agreement: 

Example 1: f l e ~  0.24, fl = 0.25157 

Example 2: fle~ ~ 0.50, fl = 1/2 

Example 3: flefr ~ 0.74, fl = 0.73760 

(5.11) 

5.2. The Marginal  Case: Logari thmic Fluctuat ion 

We now investigate the case of the marginal non-Pisot substitutions, 
with a vanishing wandering exponent. For binary sequences, this occurs 
when the second eigenvalue of the substitution matrix reads 22= + 1. 
Examples of such sequences with physical interest have been discussed in 
refs. 15-17. 

We choose to consider two specific examples, for the sake of simplicity. 

Example  1. The period-doubling sequence describes the symbolic 
dynamics of the critical trajectory of a map of the interval at the accumula- 
tion point of the period-doubling cascade (see, e.g., ref. 53). This sequence 
can be alternatively defined by the substitution rules 

cr : A A  

The eigenvalues Of the associated matrix are 21 = 2 and 22 = - 1. 

Example  2. The circle-map sequence is a particular case of the 
quasiperiodic sequence defined in Eq. (4.13), corresponding to the values 
c o = l / r  2, where r = ( l + ~ ) / 2  again denotes the golden mean, and 
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Fig. 1. Plot of numerical values of the quantity f~ /~/~1 /~, against lint[, where t > 0  is 
the spectral variable out of the fermionic spectrum and O(t) is the characteristic exponent. 
The straight dashed lines show least-square fits, demonstrating the t dependence of the scaling 
law (5.7). Two values of the modulation strength A, indicated on the curves, are considered 
in each of the following examples. (a) Example 1 [see Eq. (5.1)]. (h) Example 2 [the 
Rudin-Shapiro sequence) [see Eq. (5.9)]. (c) Example 3 [see Eq. (5.10)]. The ratio of both 
slopes in each example allows one to confirm the zl dependence of the scaling law (5.7) [see 
text and Eq. (5.11)]. 
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Fig. 1. (Continued) 

~= 1/2. These values do not fulfill the Kesten condition (4.14), so that 
the associated fluctuation is unbounded. It has been shown (17) that the 
sequence corresponding to the above values of parameters is self-similar 
and can be generated by the following substitution rules, acting on three 
letters: 

i ~ CAC 
~" --* ACCAC (5.13) 

ABCAC 

The eigenvalues of the associated matrix read 21 =~3, 22 = _ 1, and 
23 = - 1/T 3. 

In both above examples, the wandering exponent /~ vanishes. It has 
been shown (52) that the fluctuation gn takes place on a logarithmic scale in 
such situations. More quantitative results, involving partial averages, read 
as follows: 

1 N 
~ gZp~ (2p - 1)!! (wA 2 in N) p (5.14) 

n ~ l  

where w is a positive constant, depending on the substitution. The similar 
quantities with odd exponents are subleading by at least one power 
of InN. These rigorous estimates suggest that the reduced variable 
zn=gn/(~oA21nn) 1/2 is asymptotically similar to a normalized Gaussian 
random variable. 
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Using this observation, we are led to assert the following power law: 

V t y  p ~ M ~(~) (5.15) 

along the lines of Section 5.1. Moreover ,  the exponent  e(A) is given by 

c~(zl) ~ - b A  2 (5.16) 

in the regime where the modula t ion  strength A is small, where b is another  
numerical constant,  characteristic of the substitution. 

Fol lowing the argument  of Section 5.1, we can deduce from the 
estimate (5.15) the power laws 

0 ~ t 1/(1 -~(A)) (5.17) 

and finally 

4g(~Z)~ I~12 ~ )  (5.18) 

We have thus shown that  the case of marginal  substitutions yields, via 
the logari thmic scale of its fluctuation, the interesting phenomenon  of the 
occurrence of a negative specific heat exponent c~(A)<0, which varies 
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Fig. 2. Plot of the ratio --oL(A)/A 2 against the modulation strength A, where ~(A) is the 
negative specific heat exponent occurring in the scaling laws (5.17), (5.18) in the marginal case 
of a logarithmically growing fluctuation. The symbols show numerical values obtained by 
fitting data concerning the characteristic exponent to the power law (5.17). Two examples are 
considered. Open symbols: Example 1 (the period-doubling sequence) [see Eq. (5.12)]. Full 
symbols: Example 2 (the "circle" sequence) [see Eq. (5.13)]. The quadratic law (5.16) is 
clearly observed, with b ~ 0.08, and a small linear correction. 
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continuously with the strength A of the modulation, and vanishes quadrati- 
cally for small A, according to Eq. (5.16). 

The above predictions have been checked numerically in both exam- 
ples described above. In each case, we have evaluated the characteristic 
exponent • for small real values of t, according to the procedure described 
in Section 5.1. The power law (5.17) is observed to a high accuracy, so that 
we can extract from the data very precise values for the exponent ~(A). 

Figure 2 shows a plot of the ratio - -~(A)/A 2 against A. The straight 
lines, meant as guides for the eye, show that the quadratic law (5.16) is well 
verified on both examples, with a small linear correction term, up to values 
of order A ~ 4. This numerical analysis yields the value b ~ 0.08 for both 
the period-doubling sequence and the circle sequence. 

6. D I S C U S S I O N  

The present work shows that the interplay between geometrical 
characteristics of aperiodic structures and their physical properties can be 
understood in a thorough and quantitative fashion in one nontrivial 
example, namely the transverse-field ferromagnetic quantum Ising chain. 

The starting point of this analysis is the formal solution of the model 
by means of an exact mapping onto free fermions by means of a Jordan- 
Wigner transformation. This has allowed us to locate exactly the critical 
point of the model, following previous authors, ~18-31) and to identify the 
mechanism responsible for the critical singularity, at least in the case of 
the thermodynamic ground-state energy g. The next essential feature is 
the simple nature of the long-distance physics which takes place in the 
"continuum limit," i.e., in the scaling region of the fermionic spectrum 
(~ ~ 0, A--, 0). It is indeed remarkable that the wavefunctions admit a 
perturbative series expansion around the special point A =0,  where the 
transfer matrices commute among themselves. This point had already been 
noticed to some extent in refs. 11, 19 22, 24, 27, and 30. 

First, and from a qualitative viewpoint, we have generalized the Harris 
criterion and shown that the boundedness of the fluctuation g~ of the 
reduced couplings at criticality is the key concept which demarcates the 
"Onsager universality class" from the models with weaker critical 
singularities. This result can be rephrased in the language of the renormal- 
ization group. A bounded fluctuation yields a finite renormalization of the 
velocity v of fermionic excitations at criticality, so that only the prefactor 
of the logarithmic critical singularity is affected. An unbounded fluctuation 
is relevant; it yields an infinite renormalization of v, which vanishes as 
the reciprocal of either a power or an exponential of the length scale M, 
inducing thus a weaker type of critical singularity. These general results are 
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in accord with the outcomes of previous work, and especially with those of 
refs. 30 and 31, where it has been shown that, among the deterministic 
self-similar sequences generated by substitutions, only the Pisot sequences 
defined in Section 5 belong to the Onsager universality class. 

Second, we have derived quantitative predictions concerning the criti- 
cal behavior of the ground-state energy, which fully confirm our qualitative 
analysis, as well as the results of previous work. For chains with a bounded 
fluctuation (Section 4), the logarithmic singularity has an amplitude 
proportional to the finite velocity v of the massless fermionic excitations. 
In the case of quasiperiodic sequences, the prediction (4.4) holds for an 
arbitrary quasiperiodic modulation with one incommensurability ratio, 
encompassing thus many previous results as particular cases. It can be 
easily generalized to N incommensurate periods. 

For the disordered Ising chain with independent random couplings 
(Section 3), we have obtained a closed-form expression (3.38) for the 
complex characteristic exponent in the scaling region of the weak-disorder 
regime. Among other outcomes, we have determined the absolute prefactor 
of the essential singularity of the ground-state energy--a difficult task when 
using other approaches. 

The situation of generic sequences with an unbounded fluctuation 
(Section 5), with the example of non-Pisot self-similar chains, is both the 
most novel and the most interesting in our opinion. Indeed, previous 
studies of these matters (3~ 31) did not provide quantitative information on 
the critical behavior. We have proposed a heuristic scaling argument, 
which is confirmed by numerical analysis to a high degree of accuracy, in 
the following two main cases. If the asymptotic growth of the fluctuation 
obeys a power law, with a wandering exponent fl--this is the generic 
situation--there is an exponentially small essential critical singularity, 
depending on fl, reminiscent of the case of the disordered chain. In the 
marginal case of a logarithmically growing fluctuation, we predict a 
negative specific heat exponent ~(A), which varies continuously with the 
strength of the aperiodic modulation. 

Among possible further extensions of this work, let us mention Griffiths 
singularities. (54) In random classical spin models, it is known that the critical 
point is usually not an isolated singularity of the free energy. There is indeed 
a whole temperature interval, called the Griffiths phase, where thermo- 
dynamic quantities are not analytic functions of the magnetic field and/or 
the temperature. It has been proposed in ref. 55 to study this phenomenon 
by means of the fermionic representation of the two-dimensional Ising 
model. Griffiths singularities may also affect models with deterministic 
couplings which exhibit an unbounded fluctuation. On the other hand, the 
present work has only dealt with the ground-state energy of the quantum 
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spin chain. It would be desirable to extend some of the results to spin 
correlation functions, susceptibilities, and so on, both in the ground state 
and at finite temperature. A first step consists in analyzing the fermionic 
Green's functions. This question is essentially solved in the simpler case of 
the "ordinary" band edges of random systems, i.e., Lifshitz singularities.~39~ 
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